L-Aspartic Acid
Phân loại:
Thành phần khác
Mô tả:
L-Aspartic acid là gì?
Axit L-aspartic là đồng phân đối ảnh L của axit aspartic. Hoạt chất này có vai trò như một chất chuyển hóa của Escherichia coli, chất chuyển hóa của chuột và chất dẫn truyền thần kinh. Axit L-aspartic là một axit amin họ aspartate, một axit amin tạo protein, một axit aspartic và một axit amin L-alpha. Đồng thời Axit L-aspartic cũng là một axit liên hợp của L-aspartate, là một đồng phân đối hình của một axit D-aspartic.

Axit L-aspartic là một trong những axit amin không thiết yếu, thường xuất hiện ở dạng L. Hoạt chất này được tìm thấy trong cả thực vật và động vật, trong mía và củ cải đường hoạt chất chiếm ưu thế. Hoạt chất còn có vai trò là một chất dẫn truyền thần kinh.
Điều chế sản xuất L-Aspartic Acid
Người ta điều chế sản xuất L-Aspartic acid bằng cách thủy phân asparagin, phản ứng của amoniac với dietyl fumarate. Axit L-Aspartic được sản xuất công nghiệp bằng quy trình enzym trong đó aspartase (l-aspartate amoniac lyase, EC 4.3.1.1) xúc tác việc bổ sung amoniac vào axit fumaric. Ưu điểm của phương pháp sản xuất bằng enzym là nồng độ và năng suất sản phẩm cao hơn và tạo ra ít sản phẩm phụ hơn. Do đó, axit l-aspartic có thể dễ dàng tách ra khỏi hỗn hợp phản ứng bằng cách kết tinh. Năm 1973, một hệ thống tế bào cố định dựa trên các tế bào Escherichia coli được bọc trong mạng gel polyacrylamide đã được giới thiệu để sản xuất quy mô lớn.
Cơ chế hoạt động của L-Aspartic Acid
L-aspartate được coi là một axit amin không thiết yếu, có nghĩa là, trong điều kiện sinh lý bình thường, sẽ có đủ lượng axit amin được tổng hợp để đáp ứng yêu cầu của cơ thể. L-aspartate được hình thành do sự chuyển hóa của oxaloacetate trung gian của chu trình Krebs.
Axit amin đóng vai trò là tiền chất để tổng hợp protein, oligopeptit, purin, pyrimidine, axit nucleic và L-arginine. L-aspartate là một axit amin glycogenic và nó cũng có thể thúc đẩy sản xuất năng lượng thông qua quá trình trao đổi chất trong chu trình Krebs. Những hoạt động sau này là cơ sở cho tuyên bố rằng aspartate bổ sung có tác dụng chống mệt mỏi trên cơ xương, một tuyên bố chưa bao giờ được xác nhận.
Sau khi uống, L-aspartate được hấp thu từ ruột non bằng một quá trình vận chuyển tích cực. Sau khi hấp thu, L-aspartate đi vào hệ tuần hoàn và từ đó được vận chuyển đến gan, nơi phần lớn nó được chuyển hóa thành protein, purin, pyrimidines và L-arginine, đồng thời cũng bị dị hóa. L-aspartate không được chuyển hóa ở gan; nó đi vào hệ thống tuần hoàn, phân phối nó đến các mô khác nhau của cơ thể. Các cation liên kết với L-aspartate tương tác độc lập với các chất khác nhau trong cơ thể và tham gia vào các quá trình sinh lý khác nhau.
Dược động học:
Dược lực học:
Xem thêm
Emu Oil là gì?
Emu oil là loại dầu được lấy từ mỡ của chim Emu - một loại đà điểu châu Úc, hoàn toàn không có họ hàng với đà điểu châu Phi. Dầu đà điểu có thể tồn tại ở nhiều dạng, như kem trắng, viên nang hoặc chất lỏng màu vàng tùy phương pháp khai thác và mục đích sử dụng loại dầu này.

Khoảng 70% thành phần trong emu oil là những acid béo không bão hòa. Các acid béo omega-3, 6 và 9 kết hợp với nhau, bên cạnh đó là các vitamin mang lại cho emu oil khả năng chống viêm rất mạnh mẽ. Cụ thể như sau:
-
Acid oleic/acid béo omega-9: Đây là chất béo phổ biến trong chế độ ăn uống của con người, tác dụng giảm cholesterol xấu, tăng cholesterol có lợi. Trong emu oil, acid oleic có vai trò giúp vận chuyển các hợp chất hoạt tính sinh học vào da, thúc đẩy da hấp thụ dầu được nhanh chóng.
-
Acid linoleic/acid béo omega-6: Theo nghiên cứu, loại acid này có khả năng làm ức chế sản xuất melanin - yếu tố gây sạm, nám da; đồng thời còn có tác dụng chống lão hóa da hiệu quả.
-
Acid linolenic/acid béo omega-3: Có khả năng làm giảm viêm cũng như ngăn ngừa bệnh tim và viêm khớp, tăng cường sức khỏe não bộ.
-
Vitamin E và A: Đây là hai loại vitamin rất cần thiết cho da, giúp da được giảm viêm, chữa lành. Vitamin E được đánh giá là chất chống lão hóa tự nhiên, tăng cường các thành mao mạch ở da, giúp cải thiện độ ẩm và độ đàn hồi. Đồng thời, vitamin còn giúp giảm cholesterol và chống lại các gốc tự do.
Trong khi đó, vitamin A vốn được biết đến là chất chống oxy hóa mạnh mẽ nên có thể duy trì làn da khỏe mạnh và giảm viêm; thúc đẩy hệ thống miễn dịch giúp cơ thể chiến đấu giống lại nhiều loại bệnh.
Peg-40 Hydrogenated Castor Oil là gì?
Peg-40 Hydrogenated Castor Oil là kết quả từ sự kết hợp giữa Polyethylen Glycol tổng hợp (PEG) cùng thành phần dầu thầu dầu tự nhiên thông qua quá trình gọi là ethoxylation.
Peg-40 Hydrogenated Castor Oil là hoạt chất được sử dụng phổ biến trong ngành công nghiệp mỹ phẩm. Dẫn xuất ester từ dầu thầu dầu này có chức năng làm chất nhũ hóa, chất ổn định nhũ và chất hoạt động bề mặt giúp sản phẩm dễ thấm ướt lên bề mặt da, bụi bẩn trên da cũng dễ dàng được lấy đi.

Trong tự nhiên, dầu thầu dầu là dầu thực vật thu được bằng cách ép hạt của cây thầu dầu (Ricinus Communis). Loại dầu này còn gọi là triglyceride (chất béo trung tính) có nguồn gốc từ Glycerin, các chuỗi acid béo gồm khoảng 90% Axit Ricinoleic, với Axit Oleic và Linoleic. Dầu thầu dầu tồn tại ở dạng chất lỏng, màu hơi ngả vàng, trong suốt, mùi vị vô cùng đặc trưng.
Rất nhiều dòng mỹ phẩm và sản phẩm chăm sóc cá nhân có chứa thành phần Peg-40 Hydrogenated Castor Oil, điển hình như xà phòng dạng lỏng, nước hoa, sữa tắm, sữa rửa mặt, mỹ phẩm trang điểm.
Điều chế sản xuất
Peg-40 Hydrogenated Castor Oil là thành phần tổng hợp, kết quả của phản ứng hóa học Ethoxylation, trong đó Ethylene Oxide được thêm vào chất nền (dầu thầu dầu). Dầu thầu dầu sẽ phản ứng với 40 đơn vị ethylene oxide nên trong tên gọi thành phần này có số 40.
Diethyltoluamide là gì?
Diethyltoluamide lần đầu tiên được đăng ký để sử dụng bởi công chúng vào năm 1957, và được sử dụng rộng rãi ở Hoa Kỳ. Hiện nay, có hơn 225 sản phẩm chống côn trùng thương mại có chứa Diethyltoluamide.
Diethyltoluamide là một chất lỏng gần như không màu, có mùi và là thành phần hoạt tính trong nhiều sản phẩm chống côn trùng.
Tên hóa học của Diethyltoluamide là N, N-diethyl-m-toluamide, công thức hóa học: C12H17NO. Nó là một thành viên của họ hóa chất N, N-dialkylamide. Công thức thực nghiệm của Diethyltoluamide là C12H17NO, và khối lượng phân tử là 191,26g/mol.
Công thức hóa học của Diethyltoluamide là C12H17NO
Nó rất dễ hòa tan trong etanol và isopropanol, là những dung môi phổ biến trong các công thức chống thấm có chứa Diethyltoluamide.
Điều chế sản xuất
Hãy đóng kín công ten nơ khi không sử dụng. Lưu trữ trong bao bì kín. Bảo quản ở nơi khô ráo, thoáng mát, tránh xa các chất không tương thích.
Cơ chế hoạt động
Cơ chế xua đuổi của Diethyltoluamide vẫn là một chủ đề của cuộc điều tra đang diễn ra. Một số nghiên cứu cho rằng Diethyltoluamide hoạt động bằng cách hình thành một rào cản hơi có mùi và vị khó chịu đối với côn trùng.
Một nghiên cứu thường xuyên được trích dẫn đã kết luận rằng côn trùng bị hấp dẫn bởi axit lactic trên da người và hơi từ Diethyltoluamide cản trở khả năng xác định vị trí axit lactic của chúng.
Các nghiên cứu khác đã thách thức lời giải thích này, tìm ra tác dụng xua đuổi của Diethyltoluamide chỉ với carbon dioxide là chất dẫn dụ. Một nghiên cứu gần đây hơn đã cung cấp các bằng chứng về hành vi và các bằng chứng khác chứng minh rằng hiệu quả đuổi muỗi là kết quả của việc muỗi phát hiện và tránh trực tiếp Diethyltoluamide.
Calci nano là gì?
Calci là một khoáng chất mà cơ thể bạn cần để xây dựng và duy trì hệ xương chắc khỏe cũng như thực hiện nhiều chức năng quan trọng. Hầu như toàn bộ calci trong cơ thể được lưu trữ ở xương và răng, chiếm khoảng 99%, tạo nên cấu trúc và độ cứng cho xương. Cơ thể cũng cần calci cho hoạt động của cơ bắp, các dây thần kinh, mạch máu và giúp giải phóng các hormone ảnh hưởng đến nhiều chức năng trong cơ thể.
Công nghệ nano được biết đến với việc sử dụng vật chất ở mức độ nguyên tử để tạo ra các vật liệu, thiết bị mới. Công nghệ nano là một hứa hẹn tiến bộ khoa học trong nhiều lĩnh vực bao gồm cả lĩnh vực y khoa.

Calci bổ sung thông thường có kích thước lớn và không thể hấp thu một cách dễ dàng, cơ thể thường chỉ hấp thu được một phần và lượng calci dư thừa sẽ lắng đọng lại, đây là nguyên nhân gây các tác dụng không mong muốn như sỏi thận hay táo bón.
Calci nano là dạng calci sản xuất bởi công nghệ nano, calci nano ra đời như một biện pháp để khắc phục các nhược điểm của calci thông thường. Calci nano với kích thước siêu nhỏ, tăng hấp thu hơn calci thường đến 200 lần và không gây các tác dụng phụ như táo bón hay sỏi thận.
Điều chế sản xuất calci nano
Calci nano được điều chế sản xuất bởi công nghệ nano. Đây là một công nghệ tiến tiến giúp tạo ra các vật liệu ở mức độ nguyên tử. Từ đó, có thể tạo ra calci với kích thước siêu nhỏ, giúp calci dễ hấp thu hơn và không bị lắng đọng lại, giúp hạn chế các tác dụng không mong muốn mà calci thông thường mang lại.
Cơ chế hoạt động
Calci đóng vai trò then chốt trong giải phẫu, sinh lý, hóa sinh của cơ thể. Hơn 99% lượng calci trong cơ thể được lưu trữ trong xương dưới dạng hydroxyapatite. Calci ở dạng này cung cấp sức mạnh cho xương và cũng là nguồn dự trữ calci chính để giải phóng vào huyết thanh (vào máu). Trong huyết thanh, calci tồn tại với 3 dạng chính đó là calci tự do, ion hóa hoặc gắn với protein.
Cân bằng nội môi calci được duy trì nhờ hoạt động của các hormone điều hòa vận chuyển calci ở ruột, thận và xương. Ba loại hormone chính liên quan đến cơ chế hoạt động của calci là hormone PTH, vitamin D3 và calcitonin.
Tuyến cận giáp sẽ tiết hormone tuyến cận giáp là PTH để đáp ứng với tình trạng giảm calci huyết thanh. PTH sẽ tác động lên thận để giúp tăng tái hấp thu calci ở nhánh lên quai Henle, ống lượn xa và ống góp. Thận cũng phản ứng với PTH bằng cách tăng tiết vitamin D3, từ đó giúp tăng tái hấp thu calci qua ruột. PTH còn tác động lên xương để góp phần kích thích giải phóng calci tự do vào huyết thanh. Các quá trình này góp phần làm tăng calci huyết thanh.
Calcitonin được giải phóng bởi các tế bào cận nang tuyến giáp (tế bào C) để đáp ứng với tình trạng tăng calci huyết thanh. Calcitonin sẽ tác động lên xương để kích thích các nguyên bào xương đưa calci vào xương. Calcitonin còn ức chế quá trình tái hấp thu calci ở thận, làm tăng bài tiết calci qua nước tiểu. Và cuối cùng, calcitonin còn ức chế quá trình hấp thu calci ở ruột. Tất cả quá trình này sẽ dẫn đến giúp giảm calci huyết thanh.
Chitosan là gì?
Chitosan là dẫn xuất N-deacetylated của Chitin – một Polysaccharid có nhiều trong nấm, nấm men, các động vật không xương sống ở biển và động vật chân đốt. Chất Chitin được dùng để sản xuất ra Chitosan.
Chitin là một Polysaccharide mạch thẳng, là một Polymer của nhiều đơn vị N-acetyl-glucosamine nối với nhau nhờ cầu β-1,4glucoside. Vì Chitin tự nhiên có trong vỏ tôm thường liên kết với Protein, Lipid, Canxi, sắc tố… nên thường phải làm sạch trước khi sử dụng để sản xuất Chitosan.

Hai bước chính để làm sạch Chitin gồm khử khoáng bằng Acid và khử Protein bằng kiềm hoặc một Enzyme protease. Chitosan liên quan chặt chẽ với Chitin, nung nóng Chitin trong dung dịch xút đậm đặc, các gốc Acetyl bị khử hết và Chitin chuyển thành Chitosan.
Trong thiên nhiên, Chitin còn hiện diện dưới nhiều hình thức: Khá tinh khiết (sâu bướm), trong các lớp rất mỏng (cánh bướm, với hiệu ứng màu tuyệt vời), cùng với các protein tạo thành sclerotin (chất chính trong bộ xương ngoài của côn trùng)…
Chitosan có khả năng tạo thành màng mỏng, kết hợp với nước, chất béo, ion kim loại, có tính kháng khuẩn…, vì vậy được ứng dụng trong nhiều lĩnh vực khác nhau, đặc biệt là trong dược phẩm, mỹ phẩm.
Điều chế sản xuất Chitosan
Chitin dễ dàng thu được từ vỏ cua, vỏ tôm và sợi nấm.
- Cách đầu tiên, sản xuất Chitin có liên quan đến các ngành công nghiệp thực phẩm, điển hình là ngành đóng hộp. Sản xuất Chitin và Chitosan phần lớn dựa vào vỏ tôm và vỏ cua được lấy về từ các nhà máy đóng hộp. Việc sản xuất Chitosan từ vỏ động vật giáp xác (được xem như dạng chất thải của ngành công nghiệp thực phẩm) mang tính khả thi rất cao về mặt kinh tế.
- Cách thứ hai, sản xuất phức hợp Chitosan-glucan đi liền với quá trình lên men, tương tự như việc sản xuất Axit citric từ nấm Aspergillus niger, Mucor rouxii và Streptomyces bằng cách xử lý kiềm và tạo ra phức hợp trên.
Chất kiềm loại bỏ protein và đồng thời có thể đẩy nhóm chức acetyl ra khỏi hợp chất Chitin. Tùy thuộc vào nồng độ kiềm, một số glycans hòa tan được loại bỏ. Việc sử dụng vỏ động vật giáp xác chủ yếu để loại bỏ protein và hòa tan một lượng lớn Calcium carbonate có trong vỏ cua. Hợp chất Chitin đã bị khử Acetyl sẽ được tạo ra trong dung môi 40% Sodium hydroxide ở nhiệt độ 1.200C liên tục 1 tới 3 giờ đồng hồ. Cách xử lý này tạo ra 70% Chitosan đã khử Acetyl.
Cơ chế hoạt động
Sự xuất hiện của các vi sinh vật kháng kháng sinh dẫn đến nhu cầu cấp thiết để phát triển các loại kháng sinh thay thế. Các vi hạt Chitosan (CM), có nguồn gốc từ Chitosan, đã được chứng minh là làm giảm sự phát tán của vi khuẩn E. coli O157: H7, cho thấy khả năng sử dụng CM như một chất kháng khuẩn thay thế. Tuy nhiên, cơ chế cơ bản của CM trong việc giảm sự phát triển của mầm bệnh này vẫn chưa rõ ràng.

Để hiểu phương thức hoạt động, cần nghiên cứu các cơ chế phân tử của hoạt động kháng khuẩn của CM bằng phương pháp in vitro và in vivo. CM là một chất diệt khuẩn hiệu quả với khả năng phá vỡ màng tế bào. Các thử nghiệm liên kết và nghiên cứu di truyền với một chủng đột biến ompA đã chứng minh rằng Protein màng ngoài OmpA của E. coli O157: H7 rất quan trọng đối với liên kết CM. Hoạt động liên kết này được kết hợp với tác dụng diệt khuẩn của CM.
Điều trị CM có hiệu quả làm giảm sự phát tán của E. coli gây bệnh trong tử cung so với điều trị kháng sinh. Vì độc tố Shiga được mã hóa trong bộ gen của xạ khuẩn thường biểu hiện quá mức trong quá trình điều trị bằng kháng sinh, nên thường không khuyến cáo điều trị bằng kháng sinh vì nguy cơ cao mắc hội chứng urê huyết tán huyết.
Tuy nhiên, xử lý CM không tạo ra vi khuẩn hoặc độc tố Shiga ở E. coli O157: H7, cho thấy CM có thể là một ứng cử viên tiềm năng để điều trị các bệnh nhiễm trùng do mầm bệnh này gây ra. Công việc này thiết lập một cơ chế cơ bản, nhờ đó CM phát huy hoạt tính kháng khuẩn, cung cấp cái nhìn sâu sắc về việc điều trị các bệnh do nhiều mầm bệnh gây ra, bao gồm cả vi sinh vật kháng kháng sinh.
Butyrospermum Parkii Butter là gì?
Butyrospermum Parkii Butter (hay Shea butter) được gọi phổ biến hơn với cái tên là bơ hạt mỡ. Loại bơ này được chiết xuất 100% tự nhiên từ Shea - Karite - một loài cây được trồng nhiều ở các nước châu Phi.
Trong điều kiện bình thường, Butyrospermum Parkii Butter ở thể rắn và hạt bơ nguyên chất thường có màu trắng. Khi thêm borututu hoặc thuốc nhuộm, Butyrospermum Parkii Butter sẽ chuyển sang màu vàng.

Sở dĩ shea butter từ rất lâu về trước đã được ưa chuộng sử dụng trong chăm sóc da là vì chứa nhiều thành phần có lợi như:
-
Acid cinnamic: Có khả năng giúp hấp thụ tia UVB, bảo vệ làn da hiệu quả. Loại acid này cũng giúp làm giảm tình trạng viêm da, dị ứng,...
-
Vitamin E: Đây là thành phần dưỡng chất rất tốt cho làn da, dưỡng ẩm và hạn chế lão hóa da hiệu quả.
-
Vitamin A: Tác dụng kích thích tái tạo da, giúp cải thiện nếp nhăn, vết chân chim trên da.
-
Phenolics: Thành phần này nhờ có chứa nhiều chất chống oxy hóa tự nhiên nên đặc biệt có ích cho việc chăm sóc da.
-
Acid béo: Loại axit này nhờ chứa năm loại acid béo chính cũng như các chất chống oxy hóa mà mang lại tác dụng dưỡng ẩm và tái tạo da rất hiệu quả.
Tùy vào quá trình xử lý chế biến mà thành phẩm sẽ có nhiều loại bơ khác nhau trên thị trường, bao gồm:
-
Bơ shea thô: Hạt của cây shea sau khi thu hoạch sẽ được phơi khô, tách bỏ lớp vỏ cứng lấy phần thịt bên trong. Giã nát phần thịt này rồi đem rang, sau đó đem nấu để vớt lấy phần bơ nổi trên bề mặt và có thể sử dụng. Bơ sẽ có màu ngà hoặc hơi vàng, mùi hơi khó ngửi. Do là bơ thô nên thành phẩm sẽ có thể có lẫn một số tạp chất như lá cây hay xác của hạt.
-
Bơ shea chưa tinh chế: Loại bơ chưa tinh chế sẽ trải qua quá trình lọc đơn giản bằng cách dùng đất sét, vải mỏng. Sau khi lọc xong, bơ được đổ ra khuôn ở dạng thỏi hoặc đựng trong hũ.
-
Bơ shea tinh chế: Khác với bơ chưa tinh chế, shea butter tinh chế sau quá trình lọc sẽ được nhà sản xuất chế biến thêm ít nhiều để làm đổi tính chất và khử mùi đặc trưng của bơ. Bơ shea tinh chế thường có màu trắng và rất mịn. Nó có thể chứa các loại tinh dầu, chất bảo quản, chất phụ gia…
-
Bơ shea siêu tinh chế: Bơ này được lọc ít nhất 2 lần, có màu trắng và thường được dùng làm nguyên liệu cho kem dưỡng da, kem dưỡng tóc, son môi… Đó là lý do bơ shea dạng siêu tinh chế có thể chứa các hóa chất gây hại từ quá trình lọc và chế biến.
Điều chế sản xuất
Butyrospermum Parkii Butter thương mại được chiết xuất theo phương pháp ép lạnh.
Biosaccha-Ride Gum-1 là gì?
Biosaccharide gum-1 là một loại anion polysaccharide được được từ quá trình lên men vi sinh, cấu trúc mạch dài gồm L-fucose, D-galactose, axit galacturonic.
Biosaccharide gum-1 giàu chất fucose nên có khả năng tham gia điều chỉnh tính nhạy cảm của da. Biosaccharide gum-1 có ái lực đặc biệt với keratinocytes nên góp phần điều chỉnh các thông điệp tế bào thông qua các thụ thể màng của keratinocytes.

Ngoài ra, Biosaccharide gum-1 còn có khả năng điều chỉnh cơ chế ngoại di truyền nhờ sự kích thích của sirtuins-1 - loại enzyme chống lão hóa da, dưỡng ẩm, giúp làm dịu da.
Điều chế sản xuất
Biosaccharide Gum-1 là thành phần được tạo ra từ sorbitol (một phân tử đường) thông qua quá trình lên men.
Cơ chế hoạt động
Biosaccharide Gum-1 hoạt động bằng cách liên kết nước với lớp biểu bì, từ đó tạo ra một lớp màng liên kết độ ẩm trên da. Cơ chế này giúp mang lại cảm giác mềm mại, mịn màng cho làn da.
Bên cạnh đó, Biosaccharide Gum-1 còn được cho là có chức năng như một chất chống kích ứng.
Cocamidopropyl Betaine là gì?
Có mặt phổ biến trong nhiều sản phẩm chăm sóc cá nhân và làm sạch trong gia đình, Cocamidopropyl Betaine (CAPB) là một axit béo tổng hợp được làm từ dừa hoặc cũng có thể được tổng hợp.
Với vai trò là chất hoạt động bề mặt, CAPB giúp làm sạch bụi bẩn trên bề mặt da/ đồ vật. CAPB còn là thành phần tạo bọt trong một số sản phẩm.
Tồn tại ở dạng lỏng nhớt, màu vàng và không có mùi đặc trưng, Cocamidopropyl Betaine tan được trong nước lẫn trong dầu. Chất này có độ pH vào khoảng 11–12, không có mùi hoặc có mùi nhẹ.

Trong sản xuất mỹ phẩm, đặc biệt là xà phòng tắm, dầu gội đầu, sữa tắm,… Cocamidopropyl Betaine là chất cần thiết được nhà sản xuất bổ sung vào công thức. Năm 1991, CAPB được Hội đồng chuyên gia đánh giá thành phần mỹ phẩm CIR kết luận là chất an toàn (ở mức độ cho phép) để sử dụng trong các sản phẩm mỹ phẩm làm sạch.
Nồng độ của CAPB không được vượt quá 3% đối với các sản phẩm mỹ phẩm lưu lại trên da trong thời gian dài.
Điều chế sản xuất Cocamidopropyl Betaine
Quy trình sản xuất các gốc betaine khác là tổng hợp từ betaine, trong khi đó với Cocamidopropyl Betaine, người ta cho dimethylaminopropylamine phản ứng với các axit béo từ dầu dừa hoặc dầu hạt cọ để tạo ra.

Amin chính trong dimethylaminopropylamine phản ứng mạnh hơn amin bậc ba, dẫn đến xảy ra sự bổ sung có chọn lọc để tạo thành một amit. Sau đó, kết quả của phản ứng trên, axit chloroacetic phản ứng với amin bậc ba còn lại để tạo thành C19H38N2O3, hay chính là Cocamidopropyl betaine.
Cơ chế hoạt động của Cocamidopropyl Betaine
Cocamidopropyl betaine có khả năng hòa tan tuyệt vời, cao bọt và làm dày lên hiệu suất. Kích ứng nhẹ và khả năng khử trùng khá tốt, khi Cocamidopropyl betaine kết hợp với các hoạt động bề mặt khác thì sẽ cải thiện chức năng điều chỉnh độ mềm của bề mặt đó.
Ngoài ra, Cocamidopropyl betaine còn có khả năng chịu nước tốt, chống tĩnh điện cùng khả năng phân hủy sinh học.
Tên thuốc gốc (Hoạt chất)
Clofibrate (Clofibrat)
Loại thuốc
Thuốc chống rối loạn lipid máu (nhóm fibrat).
Dạng thuốc và hàm lượng
Nang 500 mg
Carotenoid là gì?
Một hợp chất hóa học tự nhiên Carotenoid được tìm thấy hầu hết trong các sắc tố thực vật, những thực vật có màu sắc mà chúng ta ăn hàng ngày. Thực vật, và một số loại carotenoid cung cấp màu cam, đỏ hoặc vàng khi chúng ta ăn chúng có lợi cho sức khỏe.
Một số thực phẩm từ động vật cũng chứa carotenoid, chẳng hạn như nhuyễn thể, động vật giáp xác và cá. Bản thân động vật biển này không sản sinh ra được carotenoid, nhưng chúng ăn nhiều thực vật có chứa tảo hoặc chúng ăn các sinh vật biển khác đã ăn nhiều carotenoid nên tổn hợp được carotenoid. Lòng đỏ trứng cũng chứa một lượng đáng kể carotenoid, đặc biệt là khi gà mái được cho ăn thức ăn giàu carotenoid.

Carotenoid được biết đến nhiều nhất là beta-carotene , nguồn cung cấp vitamin A chính từ thực vật. Một số carotenoid đã được phát hiện là có lợi cho sức khỏe được liệt kê ở đây cryptoxanthin, alpha-carotene và astaxanthin lycopene, lutein, zeaxanthin. Chúng chỉ tình cờ được tìm thấy trong các loại thực phẩm rất bổ dưỡng và nó đều hoạt động như chất chống oxy hóa
Một số nghiên cứu chỉ ra rằng carotenoid được biết đến là một dạng sắc tố hữu cơ được tìm thấy những loài sinh vật có thể quang hợp và trong thực vật. Như tảo, một số nấm và một vài loại vi khuẩn chẳng hạn. Nó là tên của một nhóm những hợp chất có công thức cấu tạo gần giống nhau và có tác dụng trong việc bảo vệ cơ thể cũng gần như nhau chứ không phải một tên gọi riêng.
Khoảng 600 loại carotenoid khác nhau đã được các nhà khoa học phát hiện ra. Chúng được phân vào hai nhóm chính là carotenoid và xanthophylis tùy theo cấu tạo.
Con người không thể tự tổng hợp ra carotenoid mà chỉ có thể sử dụng carotenoid từ việc ăn thực vật để cung cấp các nhóm chất cần thiết trong quá trình phát triển và bảo vệ cơ thể con người.
Tác dụng của carotenoid chống lại những tác nhân oxy hóa từ bên ngoài tới cơ thể. Có tới khoảng 600 nhóm carotenoid khác nhau đã được thống kê, và trong số này thì có tới 50 nhóm được tìm thấy ở thực phẩm. Trong máu của chúng ta chỉ có khoảng 15 loại. Để giúp sự ổn định sức khỏe của con người, 15 loại này góp phần quan trọng.
Điều chế sản xuất
Điều tra, nghiên cứu, chiết xuất và tinh chế một số thực vật phổ biến ở Việt Nam chứa các carotenoid, đồng thời nghiên cứu một số đặc tính sinh học của chúng lên cơ thể sinh vật, chuột. Thăm dò khả năng ứng dụng của các hợp chất trên vào sản xuất thuốc và thực phẩm thuốc phục vụ đời sống. Thu thập các thực vật chứa các carotenoid, tách chiết chất carotenoid bằng các hệ dung môi, tinh sạch carotenoid bằng sắc ký bản mỏng điều chế, sắc ký cột trên gel silicagel.
Nghiên cứu một số tính chất hóa lý và hoạt tính sinh học của các carotenoid như khả năng chống oxy hóa, kháng khuẩn. Khi thử hoạt tính của ba chế phẩm β-caroten, lycopen, lutein kết quả thu được lên hai enzyme catalase, peroxidase. Ở một thử nghiệm khác, tác dụng của ba chế phẩm β-caroten, lycopen, lutein thu được lên khả năng sinh trưởng của 12 loài vi sinh vật và chuột khi cho chúng uống cùng CCl4.
Tách chiết được β-caroten từ rau dệu bằng dung môi ete-dầu, tinh sạch bởi sắc ký lọc gel silicagel, lycopen từ cà chua bằng hệ dung môi n-hexan: axeton (6:4) và tinh sạch bằng sắc ký lọc gel silicagel, lutein từ cánh hoa cúc vạn thọ bằng hệ dung môi ete dầu, tinh sạch bằng sắc ký lọc gel silicagel. Đã khảo sát được thành phần β-carotenoid, lycopen, lutein từ 31 mẫu thực vật ở Việt Nam. Ở một số mẫu chứa nhiều lá rau sam, rau má… còn 1 nguồn nguyên liệu phổ biến là rau rệu mới được phát hiện thêm. Trong quả cà chua chín nhũn là nguồn cung cấp phong phú lycopen nhất. Trong các mẫu nghiên cứu hầu như đều có lutein với hàm lượng tương đối cao tuy nhiên cánh hoa cúc vạn thọ là mẫu có nhiều nhất.
Cơ chế hoạt động
Alpha-carotene, beta-carotene và beta-cryptoxanthin là những thành phần chuyển đổi được thành vitamin A trong cơ thể và tất cả đều được gọi là carotenoids, phần còn lại của carotenoids được liệt kê không thể được chuyển đổi thành vitamin A. Một tên gọi khác được gọi là carotenoids không chứa vitamin A. Đối với cơ thể chúng ta, hoạt chất beta-carotene là nguồn cung cấp vitamin A chính.
Chlorella là gì?
Chlorella là một chi của tảo lục đơn bào, có dạng hình cầu, đường kính khoảng 2-10 μm, không có tiên mao. Nhờ sắc tố quang hợp chlorophyll -a và b trong lục lạp mà Chlorella có màu xanh lá cây đặc trưng.
Thông qua quang hợp nó phát triển nhanh chóng chỉ cần lượng khí carbon dioxit, nước, ánh sáng mặt trời, và một lượng nhỏ các khoáng chất để tái sản xuất.

Có hơn 30 loài khác nhau, nhưng hai loại – Chlorella Vulgaris và Chlorella pyrenoidosa – được sử dụng phổ biến nhất trong nghiên cứu được biết đến hiện nay. Tảo lục chlorella được bổ sung thông qua các sản phẩm bổ sung dưới dạng uống (do chlorella có thành tế bào cứng chúng ta không thể tiêu hóa) để phát huy được hết những lợi ích của nó.
So với hầu hết các loại rau khác, tảo lục chlorella chứa nhiều chất diệp lục hơn nên nó có thể mang lại những lợi ích nhất định cho sức khỏe. Chất đạm, vitamin A, vitamin C, vitamin E, vitamin B6 và vitamin B12, thiamin, riboflavin, niacin, folate và axit pantothenic là những thành phần dinh dưỡng của tảo chlorella. Ngoài ra, nó còn chứa phốt pho, canxi, magie, kẽm.
Có nhiều dạng chế phẩm bổ sung tảo lục chlorella: Dạng viên nang, viên nén, bột. Tảo lục chlorella vừa được sử dụng như một chất bổ sung dinh dưỡng vừa được sử dụng làm nhiên liệu diesel sinh học.
Điều chế sản xuất chlorella
Tảo lục có thể được nuôi trồng trong nhà, nhưng nguồn nước ngọt tự nhiên tinh khiết trong các hồ lộ thiên sẽ cho phép chlorella hấp thụ tối đa ánh sáng mặt trời, giúp thúc đẩy việc sản sinh C.G.F trong quá trình quang hợp.
Sau khi thu hoạch, tảo lục được lọc rửa nhiều lần bằng phương pháp ly tâm để bảo đảm độ tinh khiết.
Để phá vỡ thành tế bào của chlorella, giúp cơ thể con người dễ dàng hấp thu nguồn dưỡng chất, người ta có thể dùng phương pháp hóa học, nhiệt hay enzyme. Tuy nhiên, sử dụng áp lực với quy trình DYNO®-Mill sẽ có hiệu quả cao nhất.
Sau khi được khử trùng và sấy khô, chlorella được chế biến thành dạng bột và viên để đưa đến tay người sử dụng.

Cơ chế hoạt động của chlorella
Chlorella có chứa nguồn protein, chất béo, carbohydrate, chất xơ, diệp lục, vitamin và khoáng chất tốt. Nó có thể hoạt động như một chất chống oxy hóa và giúp giảm cholesterol máu cao.
Caprylyl Glycol là gì?
Caprylyl glycol hay còn gọi là 1,2-octanediol, là một loại rượu có nguồn gốc từ Acid caprylic, một loại Acid béo bão hòa, phân tử có tám nguyên tử Cacbon. Acid caprylic là một chất lỏng không màu, mùi nhẹ, có trong sữa của một số động vật có vú cũng như trong dầu cọ và dầu dừa, có đặc tính kháng khuẩn và chống viêm.
Caprylyl glycol có trọng lượng phân tử thấp với hai nhóm hydroxyl trên mỗi phân tử.
Các tên hóa học khác của Caprylyl glycol gồm 1,2-di-hydroxyoctan; 1,2-octanediol và 1,2-octylen glycol.
Caprylyl glycol là một chất tăng cường bảo quản, có thể thay thế các chất bảo quản truyền thống như Paraben hoặc chất khử Formaldehyde. Đồng thời, chất này cũng giúp tăng hiệu quả hoạt động, tăng hoạt tính kháng khuẩn của các chất bảo quản khác trong công thức sản phẩm. Do đó, Caprylyl glycol hoạt động như một chất ổn định nhằm kéo dài thời hạn sử dụng sản phẩm và giúp ngăn ngừa các thành phần khác bị hư hỏng.
Caprylyl glycol còn được sử dụng như một chất giữ ẩm và dưỡng chất trong các sản phẩm chăm sóc cá nhân, chủ yếu là sản phẩm bôi ngoài da, đồng thời sửa đổi độ nhớt của sản phẩm.

Điều chế sản xuất
Trong công nghiệp, Caprylyl glycol được sản xuất tổng hợp, thường bắt đầu bằng việc tổng hợp Ethylene glycol hay còn gọi đơn giản là 1,2-glycols. Đây là quá trình oxy hóa nhiệt của Ethylene oxide với nước. Việc sản xuất Ethylene oxide tổng hợp bao gồm cả Caprylyl glycol và thường được thực hiện thông qua quá trình oxy hóa xúc tác của oxit kiềm tương ứng hoặc khử axit 2-hydroxy tương ứng.
Cơ chế hoạt động
Cấu trúc của Caprylyl glycol mang đến lợi ích kháng khuẩn, giúp tăng hiệu quả bảo quản khi kết hợp với nhiều loại chất bảo quản khác.
Caprylyl glycol có thể hoạt động như một chất bảo quản chống lại vi khuẩn trong các công thức dầu và nước. Tuy nhiên, chất này có hiệu quả hạn chế đối với nấm. Do đó, để bảo vệ kháng khuẩn phổ rộng, Caprylyl glycol thường được sử dụng cùng với các chất bảo quản khác trong hệ thống. Caprylyl glycol thường kết hợp với Phenoxyethanol và Chloroxylenol, hai chất bảo quản đáp ứng được quy định toàn cầu hiện nay.
Sự kết hợp giữa Phenoxyethanol và Caprylyl Glycol tạo nên hỗn hợp gọi là Optiphen, giúp sản phẩm chống lại sự phát triển của các vi sinh vật.
Với cách kết hợp này, hiệu quả kháng khuẩn được nâng cao và khả năng hòa tan của một số chất bảo quản truyền thống được nâng cao chẳng hạn như Paraben và Phenoxyethanol.
Sản phẩm liên quan









